인도

2025-03-06 17:59

업계SENTIMENTAL ANALYSIS OF TRADING WITH AI
#AITradingAffectsForex Sentiment Analysis in AI Trading Sentiment analysis in AI trading involves using natural language processing (NLP) and machine learning to assess market sentiment based on news articles, social media posts, financial reports, and other textual data. The AI trading bot then makes buy or sell decisions based on this sentiment. ⸻ How Sentiment Analysis Works in AI Trading 1. Data Collection • The AI bot gathers text data from various sources: • Financial news websites (Bloomberg, CNBC, Reuters) • Social media (Twitter, Reddit, StockTwits) • Analyst reports and earnings call transcripts • Regulatory filings and economic reports 2. Text Processing & NLP • The bot cleans the text and processes it to extract meaning using NLP techniques: • Tokenization: Breaking text into words or phrases • Stopword Removal: Removing common words (e.g., “the”, “is”) • Stemming/Lemmatization: Reducing words to their root form (e.g., “buying” → “buy”) • Named Entity Recognition (NER): Identifying key entities (companies, executives, events) 3. Sentiment Scoring • The AI assigns a sentiment score (positive, neutral, or negative) based on: • Lexicon-based methods: Matching words with a predefined dictionary of sentiment scores • Machine learning models: Training AI to recognize positive or negative sentiment • Deep learning (LSTMs, transformers like GPT): Understanding complex language nuances 4. Market Impact Prediction • The AI bot correlates sentiment scores with historical price movements.
좋아요 0
나 도 댓 글 달 래.

제출

0코멘트

댓글이 아직 없습니다. 첫 번째를 만드십시오.

FX3229433090
ブローカー
인기있는 콘텐츠

시장 분석

투자주체별매매 동향

시장 분석

유로존 경제 쇠퇴 위기 직면

시장 분석

국제 유가는 어디로

시장 분석

미국증시 레버리지(Leverage)·인버스(Inverse)형의 ETF, 최근 사상 최대 신

시장 분석

투기장 된 원유 ETL...첫 투자위험 발령

시장 분석

RBNZ 양적완화 확대

포럼 카테고리

플랫폼

전시회

IB

모집

EA

업계

시세

인덱스

SENTIMENTAL ANALYSIS OF TRADING WITH AI
인도 | 2025-03-06 17:59
#AITradingAffectsForex Sentiment Analysis in AI Trading Sentiment analysis in AI trading involves using natural language processing (NLP) and machine learning to assess market sentiment based on news articles, social media posts, financial reports, and other textual data. The AI trading bot then makes buy or sell decisions based on this sentiment. ⸻ How Sentiment Analysis Works in AI Trading 1. Data Collection • The AI bot gathers text data from various sources: • Financial news websites (Bloomberg, CNBC, Reuters) • Social media (Twitter, Reddit, StockTwits) • Analyst reports and earnings call transcripts • Regulatory filings and economic reports 2. Text Processing & NLP • The bot cleans the text and processes it to extract meaning using NLP techniques: • Tokenization: Breaking text into words or phrases • Stopword Removal: Removing common words (e.g., “the”, “is”) • Stemming/Lemmatization: Reducing words to their root form (e.g., “buying” → “buy”) • Named Entity Recognition (NER): Identifying key entities (companies, executives, events) 3. Sentiment Scoring • The AI assigns a sentiment score (positive, neutral, or negative) based on: • Lexicon-based methods: Matching words with a predefined dictionary of sentiment scores • Machine learning models: Training AI to recognize positive or negative sentiment • Deep learning (LSTMs, transformers like GPT): Understanding complex language nuances 4. Market Impact Prediction • The AI bot correlates sentiment scores with historical price movements.
좋아요 0
나 도 댓 글 달 래.

제출

0코멘트

댓글이 아직 없습니다. 첫 번째를 만드십시오.